Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated, homology-independent knock-in system

نویسندگان

  • Yohei Katoh
  • Saki Michisaka
  • Shohei Nozaki
  • Teruki Funabashi
  • Tomoaki Hirano
  • Ryota Takei
  • Kazuhisa Nakayama
چکیده

The CRISPR/Cas9 system has revolutionized genome editing in virtually all organisms. Although the CRISPR/Cas9 system enables the targeted cleavage of genomic DNA, its use for gene knock-in remains challenging because levels of homologous recombination activity vary among various cells. In contrast, the efficiency of homology-independent DNA repair is relatively high in most cell types. Therefore the use of a homology-independent repair mechanism is a possible alternative for efficient genome editing. Here we constructed a donor knock-in vector optimized for the CRISPR/Cas9 system and developed a practical system that enables efficient disruption of target genes by exploiting homology-independent repair. Using this practical knock-in system, we successfully disrupted genes encoding proteins involved in ciliary protein trafficking, including IFT88 and IFT20, in hTERT-RPE1 cells, which have low homologous recombination activity. The most critical concern using the CRISPR/Cas9 system is off-target cleavage. To reduce the off-target cleavage frequency and increase the versatility of our knock-in system, we constructed a universal donor vector and an expression vector containing Cas9 with enhanced specificity and tandem sgRNA expression cassettes. We demonstrated that the second version of our system has improved usability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering

The type II bacterial CRISPR/Cas9 system is rapidly becoming popular for genome-engineering due to its simplicity, flexibility, and high efficiency. Recently, targeted knock-in of a long DNA fragment via homology-independent DNA repair has been achieved in zebrafish using CRISPR/Cas9 system. This raised the possibility that knock-in transgenic zebrafish could be efficiently generated using CRIS...

متن کامل

Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish

The CRISPR/Cas9 system provides a powerful tool for genome editing in various model organisms, including zebrafish. The establishment of targeted gene-disrupted zebrafish (knockouts) is readily achieved by CRISPR/Cas9-mediated genome modification. Recently, exogenous DNA integration into the zebrafish genome via homology-independent DNA repair was reported, but this integration contained variou...

متن کامل

Efficient Production of Biallelic RAG1 Knockout Mouse Embryonic Stem Cell Using CRISPR/Cas9

Background: Recombination Activating Genes (RAG) mutated embryonic stem cells are (ES) cells which are unable to perform V (D) J recombination. These cells can be used for generation of immunodeficient mouse. Creating biallelic mutations by CRISPR/Cas9 genome editing has emerged as a powerful technique to generate site-specific mutations in different sequences. Ob...

متن کامل

Generation of VDR Knock-Out Mice via Zygote Injection of CRISPR/Cas9 System

CRISPR/Cas9 system has become a new versatile technology for genome engineering in various species. To achieve targeted modifications at the same site in both human and mice genomes by a CRISPR/Cas9 nuclease, we designed two target sites in conserved regions of vitamin D receptor (VDR) gene, which cover more than 17 kb of chromosome region depending on the species. We first validated the effica...

متن کامل

Rosa26-targeted sheep gene knock-in via CRISPR-Cas9 system

Recent advances in our ability to design DNA binding factors with specificity for desired sequences have resulted in a revolution in genetic engineering, enabling directed changes to the genome to be made relatively easily. Technologies that facilitate specific and precise genome editing, such as knock-in, are critical for determining the functions of genes and for understanding fundamental bio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2017